libxr  1.0
Want to be the best embedded framework
Loading...
Searching...
No Matches
stm32_uart.cpp
1#include "stm32_uart.hpp"
2
3#ifdef HAL_UART_MODULE_ENABLED
4
5using namespace LibXR;
6
7STM32UART *STM32UART::map[STM32_UART_NUMBER] = {nullptr};
8
9stm32_uart_id_t STM32_UART_GetID(USART_TypeDef *addr)
10{
11 if (addr == nullptr)
12 { // NOLINT
13 return stm32_uart_id_t::STM32_UART_ID_ERROR;
14 }
15#ifdef USART1
16 else if (addr == USART1)
17 { // NOLINT
18 return stm32_uart_id_t::STM32_USART1;
19 }
20#endif
21#ifdef USART2
22 else if (addr == USART2)
23 { // NOLINT
24 return stm32_uart_id_t::STM32_USART2;
25 }
26#endif
27#ifdef USART3
28 else if (addr == USART3)
29 { // NOLINT
30 return stm32_uart_id_t::STM32_USART3;
31 }
32#endif
33#ifdef USART4
34 else if (addr == USART4)
35 { // NOLINT
36 return stm32_uart_id_t::STM32_USART4;
37 }
38#endif
39#ifdef USART5
40 else if (addr == USART5)
41 { // NOLINT
42 return stm32_uart_id_t::STM32_USART5;
43 }
44#endif
45#ifdef USART6
46 else if (addr == USART6)
47 { // NOLINT
48 return stm32_uart_id_t::STM32_USART6;
49 }
50#endif
51#ifdef USART7
52 else if (addr == USART7)
53 { // NOLINT
54 return stm32_uart_id_t::STM32_USART7;
55 }
56#endif
57#ifdef USART8
58 else if (addr == USART8)
59 { // NOLINT
60 return stm32_uart_id_t::STM32_USART8;
61 }
62#endif
63#ifdef USART9
64 else if (addr == USART9)
65 { // NOLINT
66 return stm32_uart_id_t::STM32_USART9;
67 }
68#endif
69#ifdef USART10
70 else if (addr == USART10)
71 { // NOLINT
72 return stm32_uart_id_t::STM32_USART10;
73 }
74#endif
75#ifdef USART11
76 else if (addr == USART11)
77 { // NOLINT
78 return stm32_uart_id_t::STM32_USART11;
79 }
80#endif
81#ifdef USART12
82 else if (addr == USART12)
83 { // NOLINT
84 return stm32_uart_id_t::STM32_USART12;
85 }
86#endif
87#ifdef USART13
88 else if (addr == USART13)
89 { // NOLINT
90 return stm32_uart_id_t::STM32_USART13;
91 }
92#endif
93#ifdef UART1
94 else if (addr == UART1)
95 { // NOLINT
96 return stm32_uart_id_t::STM32_UART1;
97 }
98#endif
99#ifdef UART2
100 else if (addr == UART2)
101 { // NOLINT
102 return stm32_uart_id_t::STM32_UART2;
103 }
104#endif
105#ifdef UART3
106 else if (addr == UART3)
107 { // NOLINT
108 return stm32_uart_id_t::STM32_UART3;
109 }
110#endif
111#ifdef UART4
112 else if (addr == UART4)
113 { // NOLINT
114 return stm32_uart_id_t::STM32_UART4;
115 }
116#endif
117#ifdef UART5
118 else if (addr == UART5)
119 { // NOLINT
120 return stm32_uart_id_t::STM32_UART5;
121 }
122#endif
123#ifdef UART6
124 else if (addr == UART6)
125 { // NOLINT
126 return stm32_uart_id_t::STM32_UART6;
127 }
128#endif
129#ifdef UART7
130 else if (addr == UART7)
131 { // NOLINT
132 return stm32_uart_id_t::STM32_UART7;
133 }
134#endif
135#ifdef UART8
136 else if (addr == UART8)
137 { // NOLINT
138 return stm32_uart_id_t::STM32_UART8;
139 }
140#endif
141#ifdef UART9
142 else if (addr == UART9)
143 { // NOLINT
144 return stm32_uart_id_t::STM32_UART9;
145 }
146#endif
147#ifdef UART10
148 else if (addr == UART10)
149 { // NOLINT
150 return stm32_uart_id_t::STM32_UART10;
151 }
152#endif
153#ifdef UART11
154 else if (addr == UART11)
155 { // NOLINT
156 return stm32_uart_id_t::STM32_UART11;
157 }
158#endif
159#ifdef UART12
160 else if (addr == UART12)
161 { // NOLINT
162 return stm32_uart_id_t::STM32_UART12;
163 }
164#endif
165#ifdef UART13
166 else if (addr == UART13)
167 { // NOLINT
168 return stm32_uart_id_t::STM32_UART13;
169 }
170#endif
171#ifdef LPUART1
172 else if (addr == LPUART1)
173 { // NOLINT
174 return stm32_uart_id_t::STM32_LPUART1;
175 }
176#endif
177#ifdef LPUART2
178 else if (addr == LPUART2)
179 { // NOLINT
180 return stm32_uart_id_t::STM32_LPUART2;
181 }
182#endif
183#ifdef LPUART3
184 else if (addr == LPUART3)
185 { // NOLINT
186 return stm32_uart_id_t::STM32_LPUART3;
187 }
188#endif
189 else
190 {
191 return stm32_uart_id_t::STM32_UART_ID_ERROR;
192 }
193}
194
195ErrorCode STM32UART::WriteFun(WritePort &port)
196{
197 STM32UART *uart = CONTAINER_OF(&port, STM32UART, _write_port);
198 if (!uart->dma_buff_tx_.HasPending())
199 {
200 WriteInfoBlock info;
201 if (port.queue_info_->Peek(info) != ErrorCode::OK)
202 {
203 return ErrorCode::EMPTY;
204 }
205
206 uint8_t *buffer = nullptr;
207 bool use_pending = false;
208
209 if (uart->uart_handle_->gState == HAL_UART_STATE_READY)
210 {
211 buffer = reinterpret_cast<uint8_t *>(uart->dma_buff_tx_.ActiveBuffer());
212 }
213 else
214 {
215 buffer = reinterpret_cast<uint8_t *>(uart->dma_buff_tx_.PendingBuffer());
216 use_pending = true;
217 }
218
219 if (port.queue_data_->PopBatch(reinterpret_cast<uint8_t *>(buffer),
220 info.data.size_) != ErrorCode::OK)
221 {
222 ASSERT(false);
223 return ErrorCode::EMPTY;
224 }
225
226 if (use_pending)
227 {
228 uart->dma_buff_tx_.SetPendingLength(info.data.size_);
229 uart->dma_buff_tx_.EnablePending();
230 if (uart->uart_handle_->gState == HAL_UART_STATE_READY &&
231 uart->dma_buff_tx_.HasPending())
232 {
233 uart->dma_buff_tx_.Switch();
234 }
235 else
236 {
237 return ErrorCode::FAILED;
238 }
239 }
240
241 port.queue_info_->Pop(uart->write_info_active_);
242
243#if __DCACHE_PRESENT
244 SCB_CleanDCache_by_Addr(
245 reinterpret_cast<uint32_t *>(uart->dma_buff_tx_.ActiveBuffer()), info.data.size_);
246#endif
247
248 auto ans = HAL_UART_Transmit_DMA(
249 uart->uart_handle_, static_cast<uint8_t *>(uart->dma_buff_tx_.ActiveBuffer()),
250 info.data.size_);
251
252 if (ans != HAL_OK)
253 {
254 port.Finish(false, ErrorCode::FAILED, info, 0);
255 return ErrorCode::FAILED;
256 }
257 else
258 {
259 return ErrorCode::OK;
260 }
261 }
262
263 return ErrorCode::FAILED;
264}
265
266ErrorCode STM32UART::ReadFun(ReadPort &port)
267{
268 STM32UART *uart = CONTAINER_OF(&port, STM32UART, _read_port);
269 UNUSED(uart);
270
271 return ErrorCode::EMPTY;
272}
273
274STM32UART::STM32UART(UART_HandleTypeDef *uart_handle, RawData dma_buff_rx,
275 RawData dma_buff_tx, uint32_t tx_queue_size)
276 : UART(&_read_port, &_write_port),
277 _read_port(dma_buff_rx.size_),
278 _write_port(tx_queue_size, dma_buff_tx.size_ / 2),
279 dma_buff_rx_(dma_buff_rx),
280 dma_buff_tx_(dma_buff_tx),
281 uart_handle_(uart_handle),
282 id_(STM32_UART_GetID(uart_handle_->Instance))
283{
284 ASSERT(id_ != STM32_UART_ID_ERROR);
285
286 map[id_] = this;
287
288 if ((uart_handle->Init.Mode & UART_MODE_TX) == UART_MODE_TX)
289 {
290 ASSERT(uart_handle_->hdmatx != NULL);
291 _write_port = WriteFun;
292 }
293
294 if ((uart_handle->Init.Mode & UART_MODE_RX) == UART_MODE_RX)
295 {
296 ASSERT(uart_handle->hdmarx != NULL);
297
298 uart_handle_->hdmarx->Init.Mode = DMA_CIRCULAR;
299 HAL_DMA_Init(uart_handle_->hdmarx);
300
301 __HAL_UART_ENABLE_IT(uart_handle, UART_IT_IDLE);
302
303 HAL_UART_Receive_DMA(uart_handle, reinterpret_cast<uint8_t *>(dma_buff_rx_.addr_),
304 dma_buff_rx_.size_);
305 _read_port = ReadFun;
306 }
307}
308
310{
311 uart_handle_->Init.BaudRate = config.baudrate;
312
313 switch (config.parity)
314 {
316 uart_handle_->Init.Parity = UART_PARITY_NONE;
317 uart_handle_->Init.WordLength = UART_WORDLENGTH_8B;
318 break;
320 uart_handle_->Init.Parity = UART_PARITY_EVEN;
321 uart_handle_->Init.WordLength = UART_WORDLENGTH_9B;
322 break;
324 uart_handle_->Init.Parity = UART_PARITY_ODD;
325 uart_handle_->Init.WordLength = UART_WORDLENGTH_9B;
326 break;
327 default:
328 ASSERT(false);
329 }
330
331 switch (config.stop_bits)
332 {
333 case 1:
334 uart_handle_->Init.StopBits = UART_STOPBITS_1;
335 break;
336 case 2:
337 uart_handle_->Init.StopBits = UART_STOPBITS_2;
338 break;
339 default:
340 ASSERT(false);
341 }
342
343 if (HAL_UART_Init(uart_handle_) != HAL_OK)
344 {
345 return ErrorCode::INIT_ERR;
346 }
347 return ErrorCode::OK;
348}
349
350static void STM32_UART_RX_ISR_Handler(UART_HandleTypeDef *uart_handle)
351{
352 auto uart = STM32UART::map[STM32_UART_GetID(uart_handle->Instance)];
353 auto rx_buf = static_cast<uint8_t *>(uart->dma_buff_rx_.addr_);
354 size_t dma_size = uart->dma_buff_rx_.size_;
355
356 size_t curr_pos =
357 dma_size - __HAL_DMA_GET_COUNTER(uart_handle->hdmarx); // 当前 DMA 写入位置
358 size_t last_pos = uart->last_rx_pos_;
359
360#if __DCACHE_PRESENT
361 SCB_InvalidateDCache_by_Addr(rx_buf, dma_size);
362#endif
363
364 if (curr_pos != last_pos)
365 {
366 if (curr_pos > last_pos)
367 {
368 // 线性接收区
369 uart->read_port_->queue_data_->PushBatch(&rx_buf[last_pos], curr_pos - last_pos);
370 }
371 else
372 {
373 // 回卷区:last→end,再从0→curr
374 uart->read_port_->queue_data_->PushBatch(&rx_buf[last_pos], dma_size - last_pos);
375 uart->read_port_->queue_data_->PushBatch(&rx_buf[0], curr_pos);
376 }
377
378 uart->last_rx_pos_ = curr_pos;
379 uart->read_port_->ProcessPendingReads(true);
380 }
381}
382
383void STM32_UART_ISR_Handler_TX_CPLT(stm32_uart_id_t id)
384{ // NOLINT
385 auto uart = STM32UART::map[id];
386
387 size_t pending_len = uart->dma_buff_tx_.GetPendingLength();
388
389 if (pending_len == 0)
390 {
391 return;
392 }
393
394 uart->dma_buff_tx_.Switch();
395
396#if __DCACHE_PRESENT
397 SCB_CleanDCache_by_Addr(reinterpret_cast<uint32_t *>(uart->dma_buff_tx_.ActiveBuffer()),
398 pending_len);
399#endif
400
401 auto ans = HAL_UART_Transmit_DMA(
402 uart->uart_handle_, static_cast<uint8_t *>(uart->dma_buff_tx_.ActiveBuffer()),
403 pending_len);
404
405 ASSERT(ans == HAL_OK);
406
407 WriteInfoBlock &current_info = uart->write_info_active_;
408
409 if (uart->write_port_->queue_info_->Pop(current_info) != ErrorCode::OK)
410 {
411 ASSERT(false);
412 return;
413 }
414
415 uart->write_port_->Finish(true, ans == HAL_OK ? ErrorCode::OK : ErrorCode::BUSY,
416 current_info, current_info.data.size_);
417
418 WriteInfoBlock next_info;
419
420 if (uart->write_port_->queue_info_->Peek(next_info) != ErrorCode::OK)
421 {
422 return;
423 }
424
425 if (uart->write_port_->queue_data_->PopBatch(
426 reinterpret_cast<uint8_t *>(uart->dma_buff_tx_.PendingBuffer()),
427 next_info.data.size_) != ErrorCode::OK)
428 {
429 ASSERT(false);
430 return;
431 }
432
433 uart->dma_buff_tx_.SetPendingLength(next_info.data.size_);
434
435 uart->dma_buff_tx_.EnablePending();
436}
437
438// NOLINTNEXTLINE
439extern "C" void STM32_UART_ISR_Handler_IDLE(UART_HandleTypeDef *huart)
440{
441 if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE))
442 {
443 __HAL_UART_CLEAR_IDLEFLAG(huart);
444
445 STM32_UART_RX_ISR_Handler(huart);
446 }
447}
448
449extern "C" void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart)
450{
451 STM32_UART_RX_ISR_Handler(huart);
452}
453
454extern "C" void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
455{
456 STM32_UART_RX_ISR_Handler(huart);
457}
458
459extern "C" void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
460{
461 STM32_UART_ISR_Handler_TX_CPLT(STM32_UART_GetID(huart->Instance));
462}
463
464extern "C" __attribute__((used)) void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart)
465{
466 HAL_UART_Abort_IT(huart);
467}
468
469extern "C" void HAL_UART_AbortCpltCallback(UART_HandleTypeDef *huart)
470{
471 auto uart = STM32UART::map[STM32_UART_GetID(huart->Instance)];
472 HAL_UART_Receive_DMA(huart, huart->pRxBuffPtr, uart->dma_buff_rx_.size_);
473 uart->last_rx_pos_ = 0;
474 WriteInfoBlock info;
475 if (uart->write_port_->queue_info_->Peek(info) == ErrorCode::OK)
476 {
477 uart->write_port_->Finish(true, ErrorCode::FAILED, info, 0);
478 }
479}
480
481extern "C" void HAL_UART_AbortTransmitCpltCallback(UART_HandleTypeDef *huart)
482{
483 auto uart = STM32UART::map[STM32_UART_GetID(huart->Instance)];
484 WriteInfoBlock info;
485 if (uart->write_port_->queue_info_->Peek(info) == ErrorCode::OK)
486 {
487 uart->write_port_->Finish(true, ErrorCode::FAILED, info, 0);
488 }
489}
490
491extern "C" void HAL_UART_AbortReceiveCpltCallback(UART_HandleTypeDef *huart)
492{
493 HAL_UART_Receive_DMA(
494 huart, huart->pRxBuffPtr,
495 STM32UART::map[STM32_UART_GetID(huart->Instance)]->dma_buff_rx_.size_);
496}
497
498#endif
size_t size_
数据大小(字节)。 The size of the data (in bytes).
uint8_t * PendingBuffer()
获取备用缓冲区的指针 Returns the pending (inactive) buffer
void EnablePending()
手动启用 pending 状态 Manually sets the pending state to true
bool HasPending() const
判断是否有待切换的缓冲区 Checks whether a pending buffer is ready
void SetPendingLength(size_t size)
设置备用缓冲区的数据长度 Sets the size of the pending buffer
void Switch()
切换到备用缓冲区(若其有效) Switches to the pending buffer if it's valid
uint8_t * ActiveBuffer()
获取当前正在使用的缓冲区指针 Returns the currently active buffer
size_t GetPendingLength() const
获取 pending 缓冲区中准备好的数据长度 Gets the size of valid data in pending buffer
ErrorCode PushBatch(const Data *data, size_t size)
批量推入数据 / Pushes multiple elements into the queue
ErrorCode PopBatch(Data *data, size_t size)
批量弹出数据 / Pops multiple elements from the queue
原始数据封装类。 A class for encapsulating raw data.
size_t size_
数据大小(字节)。 The size of the data (in bytes).
void * addr_
数据存储地址。 The storage address of the data.
ReadPort class for handling read operations.
Definition libxr_rw.hpp:268
virtual void ProcessPendingReads(bool in_isr)
Processes pending reads.
Definition libxr_rw.cpp:127
ErrorCode SetConfig(UART::Configuration config)
设置 UART 配置 / Sets the UART configuration
通用异步收发传输(UART)基类 / Abstract base class for Universal Asynchronous Receiver-Transmitter (UART)
Definition uart.hpp:19
ReadPort * read_port_
读取端口 / Read port
Definition uart.hpp:51
@ NO_PARITY
无校验 / No parity
@ ODD
奇校验 / Odd parity
@ EVEN
偶校验 / Even parity
WritePort * write_port_
写入端口 / Write port
Definition uart.hpp:52
WritePort class for handling write operations.
Definition libxr_rw.hpp:402
void Finish(bool in_isr, ErrorCode ans, WriteInfoBlock &info, uint32_t size)
更新写入操作的状态。 Updates the status of the write operation.
Definition libxr_rw.cpp:208
LibXR 命名空间
Definition ch32_gpio.hpp:9
ErrorCode(* ReadFun)(ReadPort &port)
Function pointer type for read operations.
Definition libxr_rw.hpp:245
ErrorCode(* WriteFun)(WritePort &port)
Function pointer type for write operations.
Definition libxr_rw.hpp:241
UART 配置结构体 / UART configuration structure.
Definition uart.hpp:44
uint8_t stop_bits
停止位长度 / Number of stop bits
Definition uart.hpp:48
Parity parity
校验模式 / Parity mode
Definition uart.hpp:46
uint32_t baudrate
波特率 / Baud rate
Definition uart.hpp:45